Fine Scale Modeling of Hydroclimate over California and the West

David W. Pierce¹

Tim P. Barnett¹

Hugo G. Hidalgo¹

Tapash Das¹

Celine Bonfils²

Benjamin D. Santer²

G. Bala²

Michael D. Dettinger³

Daniel R. Cayan^{1,3}

Art Mirin²

Andrew W. Wood⁴

Toru Nozawa⁵

¹Scripps Institution of Oceanography ²Lawrence Livermore National Laboratory

³U.S. Geological Survey, La Jolla, CA ⁴University of Washington

The hydrological cycle is changing

- Examples of such changes are well documented:
 - Changes in snowfall & snow pack
 - □ e.g., Mote 2003; Mote et al. 2005; Knowles et al. 2006
 - Changes in streamflow
 - e.g., Cayan et al. 2001; Stewart et al. 2005; Maurer et al. 2007
 - Warmer air temperatures (esp. spring Tmin)
 - e.g., Dettinger et al. 1995; Easterling 2002
- May affect our water supply in coming decades

The hydrological cycle is changing

- Examples of such changes are well documented:
 - Changes in snowfall & snow pack
 - e.g., Mote 2003; Mote et al. 2005; Knowles et al. 2006
 - Changes in streamflow
 - e.g., Cayan et al. 2001; Stewart et al. 2005; Maurer et al. 2007
 - Warmer air temperatures
 - e.g., Dettinger et al. 1995; Easterling 2002
- May affect our water supply in coming decades

Can we say with confidence that these changes are due to human effects?

Detection and Attribution (D&A)

- Detection: are the changes inconsistent with natural variability?
- Attribution: are the changes consistent with anthropogenic forcing?
- Generate a "fingerprint" that encapsulates changes expected (from model runs)
- Assess trend in fingerprint in obs and models

Time series of key variables (obs.)

All variables have been normalized (fractionalized) by dividing by the CCSM3-FV control run mean over first 300 yrs.

Necessary for the multivariate detection and attribution (D&A), so have same variance in each variable (the "units problem").

Novel aspects

- Multivariate Detection and Attribution (D&A)
 - Not just temperature or streamflow alone
- Regional
 - Have to address problems of large amplitude natural variability
 - Global results downscaled to 1/8° to capture topographic effects
- ☐ Related to the hydrological cycle
 - Rare in formal D&A work
 - Immediate application to problems of practical importance

Overall scheme

- Start with global GCMs: control and anthropogenically forced runs
- 2. Downscale and apply to region of interest
- D&A on 3 variables:
 - SWE/P (1 April Snow Water Equv. / Oct-Mar precip)
 - Temperature (examined JFM frost days daily minimum temperature)
 - River flow (examined JFM fraction and CT, center of timing)

Models and data

- ☐ Control model GCM runs (1500 yrs)
 - 850 yrs CCSM3-FV (1.25°x1°; finer resolution than T85)
 - 750 yrs PCM (T42)
- ☐ Anthropogenically forced GCM runs, 1900-1999 (1400 yrs)
 - PCM (4 members)
 - MIROC (10 members)
- □ Regional statistical downscaling of GCM forcing
 - 2 methods, 12 km resolution
- □ VIC hydrological model (1/8 deg resolution)
- □ Observations, 1950-1999
 - Snow courses for SWE
 - UW, Maurer, PRISM for T and P
 - Naturalized flow from Colorado R. (Lee's Ferry), Columbia R. (Dalles),
 Sacramento and San Joaquin river

Multivariate fingerprint

Ensemble signal strength & significance

Changes with elevation

Blue = decreases

Temperature

Snowy days

SWE/P

Runoff

Tapash Das, SIO

Time to detection

D&A helps us understand today. What about tomorrow?

Looking Ahead

- Overall goal: High resolution, probabilistic projections of climate change impacts over California
- Downscaling
 - Statistical Techniques
 - Hidalgo and Dettinger downscaling that preserves diurnal changes
 - Collaboration with Ed Maurer to compare to other statistical techniques
 - Collaborations with colleagues using WRF and RegCM
 - Participated in <u>Regional climate model</u> <u>Enhancement and Baseline climate</u> <u>Intercomparison (REBI) project (N. Miller et al.)</u>
 - Compare high-resolution simulations to observations and each other

Looking Ahead

- □ Regional Spectral atmospheric Model (RSM)
 - Building on success of Kanamitsu and Kanamaru (2007), 57-year dynamical downscaling of NCEP/NCAR reanalysis at 10 km resolution (CaRD10)
 - Extending to future climate scenarios; goal is multiple ensemble members at 10 km resolution
- Coupled regional model (Seo, A. Miller)
 - Influence of ocean upwelling on coastal temperatures
 - Regions of persistent marine stratus significant global errors, affects us too
 - Influence of local vegetation changes on regional climate

Looking Ahead

- Selecting global models for regional downscaling
 - How to best do this for a trustworthy regional result
 - Way to make best use of multiple global runs for our region's needs
- Probabilistic understanding
 - Mike Dettinger's "spaghetti" of future climate possibilities
 - How do global uncertainties propagate through to water availability, ecology, heat waves, etc.
- Higher spatial resolution
 - Marine layer / sea breeze effects are vital to energy consumption!

Conclusions

- Much previous work noting changes in snow cover, temperature, and river flow over the western U.S., but no formal D&A, nor multivariate, nor on such a fine scale
- □ Formal D&A analysis shows changes in western hydrology over 1950-99 are largely human-induced (est., 60%; ENSO and the PDO are also important in our region).
- □ Detailed agreement between model and obs. over past conditions gives confidence for regional climate projections and their impact on California.